Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A conserved mechanism for nitrile metabolism in bacteria and plants.

Identifieur interne : 002031 ( Main/Exploration ); précédent : 002030; suivant : 002032

A conserved mechanism for nitrile metabolism in bacteria and plants.

Auteurs : Andrew J M. Howden [Royaume-Uni] ; C Jill Harrison ; Gail M. Preston

Source :

RBID : pubmed:18786181

Descripteurs français

English descriptors

Abstract

Pseudomonas fluorescens SBW25 is a plant growth-promoting bacterium that efficiently colonizes the leaf surfaces and rhizosphere of a range of plants. Previous studies have identified a putative plant-induced nitrilase gene (pinA) in P. fluorescens SBW25 that is expressed in the rhizosphere of sugar beet plants. Nitrilase enzymes have been characterised in plants, bacteria and fungi and are thought to be important in detoxification of nitriles, utilisation of nitrogen and synthesis of plant hormones. We reveal that pinA is a NIT4-type nitrilase that catalyses the hydrolysis of beta-cyano-L-alanine, a nitrile common in the plant environment and an intermediate in the cyanide detoxification pathway in plants. In plants cyanide is converted to beta-cyano-L-alanine, which is subsequently detoxified to aspartic acid and ammonia by NIT4. In P. fluorescens SBW25 pinA is induced in the presence of beta-cyano-L-alanine, and the beta-cyano-L-alanine precursors cyanide and cysteine. pinA allows P. fluorescens SBW25 to use beta-cyano-L-alanine as a nitrogen source and to tolerate toxic concentrations of this nitrile. In addition, pinA is shown to complement a NIT4 mutation in Arabidopsis thaliana, enabling plants to grow in concentrations of beta-cyano-L-alanine that would otherwise prove lethal. Interestingly, over-expression of pinA in wild-type A. thaliana not only resulted in increased growth in high concentrations of beta-cyano-L-alanine, but also resulted in increased root elongation in the absence of exogenous beta-cyano-L-alanine, demonstrating that beta-cyano-L-alanine nitrilase activity can have a significant effect on root physiology and root development.

DOI: 10.1111/j.1365-313X.2008.03682.x
PubMed: 18786181


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A conserved mechanism for nitrile metabolism in bacteria and plants.</title>
<author>
<name sortKey="Howden, Andrew J M" sort="Howden, Andrew J M" uniqKey="Howden A" first="Andrew J M" last="Howden">Andrew J M. Howden</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harrison, C Jill" sort="Harrison, C Jill" uniqKey="Harrison C" first="C Jill" last="Harrison">C Jill Harrison</name>
</author>
<author>
<name sortKey="Preston, Gail M" sort="Preston, Gail M" uniqKey="Preston G" first="Gail M" last="Preston">Gail M. Preston</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:18786181</idno>
<idno type="pmid">18786181</idno>
<idno type="doi">10.1111/j.1365-313X.2008.03682.x</idno>
<idno type="wicri:Area/Main/Corpus">002053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002053</idno>
<idno type="wicri:Area/Main/Curation">002053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002053</idno>
<idno type="wicri:Area/Main/Exploration">002053</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A conserved mechanism for nitrile metabolism in bacteria and plants.</title>
<author>
<name sortKey="Howden, Andrew J M" sort="Howden, Andrew J M" uniqKey="Howden A" first="Andrew J M" last="Howden">Andrew J M. Howden</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB</wicri:regionArea>
<orgName type="university">Université d'Oxford</orgName>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="nation">Angleterre</region>
<region type="région" nuts="1">Oxfordshire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harrison, C Jill" sort="Harrison, C Jill" uniqKey="Harrison C" first="C Jill" last="Harrison">C Jill Harrison</name>
</author>
<author>
<name sortKey="Preston, Gail M" sort="Preston, Gail M" uniqKey="Preston G" first="Gail M" last="Preston">Gail M. Preston</name>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alanine (analogs & derivatives)</term>
<term>Alanine (metabolism)</term>
<term>Aminohydrolases (genetics)</term>
<term>Aminohydrolases (metabolism)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Nitriles (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Roots (growth & development)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Pseudomonas fluorescens (genetics)</term>
<term>Pseudomonas fluorescens (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alanine (analogues et dérivés)</term>
<term>Alanine (métabolisme)</term>
<term>Aminohydrolases (génétique)</term>
<term>Aminohydrolases (métabolisme)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Nitriles (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Pseudomonas fluorescens (génétique)</term>
<term>Pseudomonas fluorescens (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Alanine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aminohydrolases</term>
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alanine</term>
<term>Aminohydrolases</term>
<term>Bacterial Proteins</term>
<term>Nitriles</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Alanine</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Plants, Genetically Modified</term>
<term>Pseudomonas fluorescens</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aminohydrolases</term>
<term>Arabidopsis</term>
<term>Protéines bactériennes</term>
<term>Pseudomonas fluorescens</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Plants, Genetically Modified</term>
<term>Pseudomonas fluorescens</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alanine</term>
<term>Aminohydrolases</term>
<term>Arabidopsis</term>
<term>Nitriles</term>
<term>Protéines bactériennes</term>
<term>Pseudomonas fluorescens</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Bacterial</term>
<term>Genetic Complementation Test</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pseudomonas fluorescens SBW25 is a plant growth-promoting bacterium that efficiently colonizes the leaf surfaces and rhizosphere of a range of plants. Previous studies have identified a putative plant-induced nitrilase gene (pinA) in P. fluorescens SBW25 that is expressed in the rhizosphere of sugar beet plants. Nitrilase enzymes have been characterised in plants, bacteria and fungi and are thought to be important in detoxification of nitriles, utilisation of nitrogen and synthesis of plant hormones. We reveal that pinA is a NIT4-type nitrilase that catalyses the hydrolysis of beta-cyano-L-alanine, a nitrile common in the plant environment and an intermediate in the cyanide detoxification pathway in plants. In plants cyanide is converted to beta-cyano-L-alanine, which is subsequently detoxified to aspartic acid and ammonia by NIT4. In P. fluorescens SBW25 pinA is induced in the presence of beta-cyano-L-alanine, and the beta-cyano-L-alanine precursors cyanide and cysteine. pinA allows P. fluorescens SBW25 to use beta-cyano-L-alanine as a nitrogen source and to tolerate toxic concentrations of this nitrile. In addition, pinA is shown to complement a NIT4 mutation in Arabidopsis thaliana, enabling plants to grow in concentrations of beta-cyano-L-alanine that would otherwise prove lethal. Interestingly, over-expression of pinA in wild-type A. thaliana not only resulted in increased growth in high concentrations of beta-cyano-L-alanine, but also resulted in increased root elongation in the absence of exogenous beta-cyano-L-alanine, demonstrating that beta-cyano-L-alanine nitrilase activity can have a significant effect on root physiology and root development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18786181</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>02</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>57</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>A conserved mechanism for nitrile metabolism in bacteria and plants.</ArticleTitle>
<Pagination>
<MedlinePgn>243-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1365-313X.2008.03682.x</ELocationID>
<Abstract>
<AbstractText>Pseudomonas fluorescens SBW25 is a plant growth-promoting bacterium that efficiently colonizes the leaf surfaces and rhizosphere of a range of plants. Previous studies have identified a putative plant-induced nitrilase gene (pinA) in P. fluorescens SBW25 that is expressed in the rhizosphere of sugar beet plants. Nitrilase enzymes have been characterised in plants, bacteria and fungi and are thought to be important in detoxification of nitriles, utilisation of nitrogen and synthesis of plant hormones. We reveal that pinA is a NIT4-type nitrilase that catalyses the hydrolysis of beta-cyano-L-alanine, a nitrile common in the plant environment and an intermediate in the cyanide detoxification pathway in plants. In plants cyanide is converted to beta-cyano-L-alanine, which is subsequently detoxified to aspartic acid and ammonia by NIT4. In P. fluorescens SBW25 pinA is induced in the presence of beta-cyano-L-alanine, and the beta-cyano-L-alanine precursors cyanide and cysteine. pinA allows P. fluorescens SBW25 to use beta-cyano-L-alanine as a nitrogen source and to tolerate toxic concentrations of this nitrile. In addition, pinA is shown to complement a NIT4 mutation in Arabidopsis thaliana, enabling plants to grow in concentrations of beta-cyano-L-alanine that would otherwise prove lethal. Interestingly, over-expression of pinA in wild-type A. thaliana not only resulted in increased growth in high concentrations of beta-cyano-L-alanine, but also resulted in increased root elongation in the absence of exogenous beta-cyano-L-alanine, demonstrating that beta-cyano-L-alanine nitrilase activity can have a significant effect on root physiology and root development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Howden</LastName>
<ForeName>Andrew J M</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harrison</LastName>
<ForeName>C Jill</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Preston</LastName>
<ForeName>Gail M</ForeName>
<Initials>GM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009570">Nitriles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>923-01-3</RegistryNumber>
<NameOfSubstance UI="C004631">3-cyanoalanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.4.-</RegistryNumber>
<NameOfSubstance UI="D000619">Aminohydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.5.1</RegistryNumber>
<NameOfSubstance UI="C021867">nitrilase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OF5P57N2ZX</RegistryNumber>
<NameOfSubstance UI="D000409">Alanine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000409" MajorTopicYN="N">Alanine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000619" MajorTopicYN="N">Aminohydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009570" MajorTopicYN="N">Nitriles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011551" MajorTopicYN="N">Pseudomonas fluorescens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18786181</ArticleId>
<ArticleId IdType="pii">TPJ3682</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-313X.2008.03682.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Oxfordshire</li>
</region>
<settlement>
<li>Oxford</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Harrison, C Jill" sort="Harrison, C Jill" uniqKey="Harrison C" first="C Jill" last="Harrison">C Jill Harrison</name>
<name sortKey="Preston, Gail M" sort="Preston, Gail M" uniqKey="Preston G" first="Gail M" last="Preston">Gail M. Preston</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Howden, Andrew J M" sort="Howden, Andrew J M" uniqKey="Howden A" first="Andrew J M" last="Howden">Andrew J M. Howden</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18786181
   |texte=   A conserved mechanism for nitrile metabolism in bacteria and plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18786181" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020